Geant3 as a tool for Muon Cooling and Acceleration simulations

Rajendran Raja Fermilab

NUFACT03, Columbia University

Format of talk

- Geant3- Brief description- Best description to date of dE/dx + particle interactions in a simulation code
- Our contribution- Added data driven geometry
- Added electric fields. Both E+B fields are described in general field maps.
- Coupled it to Minuit- MITER
- Result is a tool which can be used for muon cooling + acceleration simulation.
- Modeling- Algebraic, Cosy, Icool, Geant-Each has its niche.
- Before we build a system it needs the best simulation done
- Injection/Extraction studies

- Data Driven geometry using RCP structures developed for D0 Run I.
- No geometry constants in the code.
- Code is Generic. Geometry information contained in structured RCP files. All different simulations have same structure. Understand one understand all.

```
\ARRAY DETECTOR_SYSTEMS
| media 0-99. rot matrices 0-999

'MUCOOL' | media 0-99. rot matrices 0-999

'TARGET' | target for internal target measurement

'MAPS' | Will DO MAPS between any two points in the ring if this RCP file is specified.

\END
```

Geant geometry

 Geant geometry description is like a "Matryushka doll" Mother volume contains daughter volumes in several layers. Complex shapes can be simulated.

Geant Geometry

Geant Geometry

Geant Geometry- Complex example- CMS detector

6

Geant geometry

- Can simulate complex absorber shapes easily. Can calculate deposition of energy due to dE/dx of muons + decay electrons accurately. Can make the simulation very realistic. Needed before building.
- Also, magnetic fields are described as field maps (not expansions about the closed orbit). This enables easier investigation of perturbations to optics of say ring coolers by the introduction of injection/extraction systems.
- Geant does not have electric fields. We have changed the Runge-Kutta routine in Geant to use electric fields correctly. Integration of tof done correctly.

Geant3 modified

- Electric fields added
- dE/dx, multiple scattering done well in Geant3
- Electromagnetic showers and hadronic interactions done well
- Arbitrarily complex geometry shapes available by nesting Geant3 shapes
- One can feed in 3D magnetic fields that are realistic.
- We hope to study the problem of injection/extraction into ring coolers using these tools.

Equations of motion in presence of electric and magnetic fields

```
\vec{p}, E is the particle 4 vector, \vec{u} is the
 tangent to the trajector y, s the arc length,
 v the velocity, \eta is the Lorentz factor
 c the velocity of light,
m<sub>0</sub> the particle mass, q the charge
\vec{\varepsilon} is the electric field, \vec{B} is the magnetic
                                                                                          field
\frac{d\vec{p}}{dt} = q (\vec{\varepsilon} + \vec{v} \times \vec{B})
\frac{d\vec{p}}{dt} = \frac{d\vec{p}}{ds} \times \frac{ds}{dt} = v \frac{d\vec{p}}{ds}
\vec{p} = \vec{u} m_0 c \eta
p \frac{dp}{ds} = \vec{p} \circ \frac{d\vec{p}}{ds} \Rightarrow \frac{dE}{ds} = q (\vec{\varepsilon} \circ \vec{u})  (1)
\frac{d\vec{u}}{ds} = \frac{d^{2}\vec{x}}{ds^{2}} = \frac{q}{p} \left( \vec{u} \times \vec{B} + \frac{\vec{\varepsilon}}{v} - \frac{\vec{\varepsilon} \circ \vec{u}}{v} \vec{u} \right)  (2)
\frac{dt}{ds} = \frac{1}{3}  (3)
```

Runge-Kutta Equations

Runge-Kutta is performed on 3 equations simultaneously. Nystrom algorithm

$$y'' = f(y', y, x)$$
solves to
$$y(x + h) = y(x) + hy'(x) + (h^{2}/6)(K_{1} + K_{2} + K_{3}) + O(h^{5})$$

$$y'(x + h) = y'(x) + (h/6)(K_{1} + 2K_{2} + 2K_{3} + K_{4}) + O(h^{5})$$

$$K_{j} = f(y'_{j}, y_{j}, x_{j}) \text{ for } j = 1,2,3,4$$

$$x_{1} = x, x_{2} = x_{3} = x + h/2, x_{4} = x + h$$

$$y_{1} = y(x), y_{2} = y_{3} = y(x) + (h/2)y'(x) + (h^{2}/8)K_{1}$$

$$y_{4} = y(x) + hy'(x) + (h^{2}/2)K_{3}$$

$$y'_{1} = y'(x), y'_{2} = y'(x) + (h/2)K_{1}, y'_{3} = y'(x) + (h/2)K_{2},$$

$$y'_{4} = y'(x) + hK_{3}$$

Geant Simulation of ring cooler

ARTERING COOLER-NEW SCHEME FROM BALBEK 2014/01

Geant Simulation of ring cooler

MITER

- Separate program that calls Geant.
- Has interface to MINUIT
- Present algorithm
- Remove all absorbers.
- Acquire times at which on momentum particle crosses all rf volumes (16x4)
- Start particle at beginning of quadrant and track one turn
- Work out rf frequency for a harmonic number =28
- Replace main absorbers. No wedges.
- Iterate One Turn with no straggling or multiple scattering or decay.
- Re-work out the times.
- Re calculate RF gradient such that loss per absorber
 = gain / quadrant.
- Re work out the rf frequency. Iterate 30 times till convergence.
- RF entry at -15 degrees and exit at ~ 75degrees. Sin Wave.

RING COOLER-NEW SCHEME FROM BALBEKOV24/02/03 ARTE

